
www.manaraa.com

Hipikat: Recommending Pertinent Software Development Artifacts

Davor Čubranić and Gail C. Murphy

Department of Computer Science
University of British Columbia

201-2366 Main Mall, Vancouver BC
Canada V6T 1Z4

E-mail: fcubranic, murphyg@cs.ubc.ca

Abstract

A newcomer to a software project must typically come
up-to-speed on a large, varied amount of information about
the project before becoming productive. Assimilating this
information in the open-source context is difficult because
a newcomer cannot rely on the mentoring approach that is
commonly used in traditional software developments. To
help a newcomer to an open-source project become produc-
tive faster, we propose Hipikat, a tool that forms an implicit
group memory from the information stored in a project’s
archives, and that recommends artifacts from the archives
that are relevant to a task that a newcomer is trying to per-
form. To investigate this approach, we have instantiated
the Hipikat tool for the Eclipse open-source project. In this
paper, we describe the Hipikat tool, we report on a qualita-
tive study conducted with a Hipikat mock-up on a medium-
sized in-house project, and we report on a case study in
which Hipikat recommendations were evaluated for a task
on Eclipse.

1. Introduction

A software developer who joins an existing software de-
velopment team must come up-to-speed on a large, varied
amount of information before becoming productive. Sim
and Holt, for instance, interviewed newcomers to a project
and found that they had to learn intricacies about the system,
development processes being used, and the organizational
structure surrounding the project, amongst others [15]. In
collocated teams, this knowledge is often gained through
mentoring: An existing member of the team works closely
with the newcomer, looking over their shoulder, and impart-
ing the oral tradition of the project, as the newcomer works
on their first assigned tasks [15, 6].

Newcomers to open-source software projects cannot rely
on this traditional approach. Communication between

members of a team who are separated geographically and
across time zones do not have access to such lightweight,
high-bandwidth communication channels as the lunch table.
Instead, these newcomers must try to find their way amongst
the huge amount of archived, electronic information that is
maintained as part of the project, such as the source repos-
itory, the bug database, and postings to newsgroups. Find-
ing one’s way, for instance, through the over 50,000 e-mail
messages archived for the Apache open-source project (cov-
ering the period from February 1995 to May 1999 [11]) or
through the one hundred or so postings each weekday to the
Eclipse open-source project newsgroup,1 is indeed a daunt-
ing task.

To help a newcomer in this situation become productive
more quickly, we propose a tool that recommends existing
artifacts from the development that are relevant to a task that
the newcomer is trying to perform. In essence, we consider
all of the artifacts that have been produced—the versions
of the source, the bugs, archived electronic communication,
web documents—as an implicit group memory. The tool
plays two roles. First, the tool infers links between the ar-
tifacts that may have been apparent at one time to members
of the development team but that were not recorded. Sec-
ond, using these links, the tool, in a role similar to that of a
mentor, suggests possibly relevant parts of the group mem-
ory given information about a task a newcomer is trying
to perform. To investigate this hypothesis, we have built
a tool called Hipikat,2 we have instantiated Hipikat for the
Eclipse open-source project, and we have conducted two
exploratory studies: one using a mock-up of Hipikat on a
medium-sized in-house project, and one using the Hipikat
prototype on Eclipse.

In this paper, we begin with an overview of the structure
of open-source projects, with a specific focus on Eclipse
(Section 2). We then describe our approach to forming a

1www.eclipse.org
2Hipikat means “eyes wide open” in the West African language Wolof.

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

group memory (Section 3), describe the Hipikat tool (Sec-
tion 4), and present our exploratory studies into the effec-
tiveness of the approach (Section 5). A discussion of the
approach and tool follows (Section 6), as does a compari-
son to related efforts (Section 7).

2. Open-Source Projects

Outside the basic principle that the source code be freely
available to anyone wishing to view or modify it [12], open-
source projects vary in size, application domain, implemen-
tation language, team organization, and licensing model.
Although there are differences between projects, a set of
open-source best-practices is emerging, and a non-trivial
project will typically produce the following four electronic
artifacts.

1. CVS source repository Most projects use CVS [2] to
provide version control support. The repository con-
tains a complete history of the code base.

2. Issue-tracking system An issue-tracking system is typ-
ically used to submit and track bugs and feature re-
quests on-line. Some systems, such as Bugzilla,3 al-
low the posting of comments within tracked items, en-
abling the capture of discussion about the direction of
bug fixes and feature implementations.

3. Communication channels Since project members
are typically widely distributed, communication tends
to be asynchronous, and to be supported electroni-
cally [5]. The culture of open-source projects is to
keep all communication public; mailing lists and news-
groups are used more frequently than person-to-person
mail. These archives are typically available on-line.

4. Online documentation Available documentation is
most often code-oriented: reference manuals and pro-
gramming guides are common; architectural descrip-
tions and design-level documentation are rare. Docu-
mentation is usually distributed through a web site.

2.1. Eclipse.org

We are focusing our research efforts on one particular
open-source project, the Eclipse extensible integrated de-
velopment environment project. The Eclipse platform was
originally developed by IBM, and was subsequently re-
leased under an open-source license. The platform can be
extended through plug-ins. Basic Eclipse distribution in-
cludes plug-ins for Java development and for communica-
tion with CVS.

3www.mozilla.org/projects/bugzilla/

The Eclipse project mostly matches the earlier descrip-
tion of open-source projects: it includes a CVS repository
with open read-only access, public newsgroups and mail-
ing lists, a web site with documentation, and uses Bugzilla.
At this time, there are two fairly distinct groups of devel-
opers: IBM employees who are working on the runtime of
the platform, and on bundled plug-ins (the Eclipse core),
and a much larger community of third-party plug-in devel-
opers, who range from large commercial software develop-
ers to hobbyist programmers. This division is reflected in
the project’s artifacts. For example, most newsgroups post-
ings are questions about using and accessing the core API.
Compared to the Mozilla project,4 there is little discussion
or give-and-take within the issue-tracking system, likely be-
cause the Eclipse project is in its early stages compared to
Mozilla, which after four years as an open-source project
has a sizeable portion of developers outside the Netscape
Communications Corporation in which the system origi-
nated.

3. Approach

Our approach has two parts. First, we form the im-
plicit group memory from the artifacts and communications
stored in a project’s history. Second, we present to the de-
veloper artifacts selected from this implicit group memory
that may be relevant to the task being performed.

Figure 1 shows the schema we use to represent a
project’s implicit group memory. There are four types of
artifacts represented in the schema: bug and feature de-
scriptions (e.g., items in Bugzilla, source file revisions (e.g,
checked in a CVS source repository), messages posted on
developer forums (e.g., newsgroups and mailing lists), and
other project documents (e.g., design documents posted on
the project’s web site). These artifacts are created by project
members, represented by Person in the diagram.

Entries in the project’s issue-tracking system are a locus
within the schema because these entries typically represent
a logical unit of work on the project. Source revisions are
checked into the source repository to respond to one of these
entries; newsgroup postings and mailing list messages often
contain discussion that either results in a new entry or that
is about an existing entry; other documentation may contain
information about a particular entry, such as specific design
trade-offs related to a feature request.

A given project may not contain all artifacts or links de-
scribed in the schema. In general, missing artifacts result in
a loss of the portion of the schema related to the artifact. In
a small number of cases, such as structural design documen-
tation, a missing artifact might be reverse engineered from
other project artifacts; for example, some limited kinds of

4www.mozilla.org

2

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

File
revision

Change/
Bug

*

*

*

*

Person

Message

Document

1

* 1

* *

* *

*

*

posts

about

writes

works on

1

implements

documents
*

similar to*

1

writes

similar to

reply to

*

*

*

Figure 1. Artifact linkages schema

design documentation might be regenerated from source.
Missing links are easier to infer as information contained
within the project artifacts, and meta-information available
about those artifacts, can be exploited. For instance, some
links between feature requests and file revisions might be
inferred if there is a project convention to include in a
check-in comment associated with the revision a reference
to the issue-tracking system entry that describes the feature
request. Other links between entries in the issue-tracking
system and file revisions might might be inferred based on
meta-information, such as when particular project artifact’s
were created or touched; for example, it is likely that the au-
thor of a bug fix checked in source revision(s) close to the
time that the bug was closed in the issue-tracking system.

The schema is also used to direct the selection of rel-
evant artifacts in response to a query. For example, once a
developer has started working on a task, such as a request to
make a particular change to the system, the developer may
be interested in other tasks that have been completed within
the same subsystem, or with a similar description. Follow-
ing the similar to links may lead to tasks that are help-
ful. Once a similar task has been identified, following the
implements links will lead to source revisions that im-
plemented the task of interest. These revisions may help a
developer identify code that may have to be modified or un-
derstood for the task at hand. The completed similar tasks
may also have related discussions about which design op-
tions were examined, and which decisions were made that
may impact the task at hand.

Abstractly, a tool implementing our approach has to im-
plement three distinct functions.

1. Identification As artifacts are added to a project’s his-
tory, the implicit group memory must be formed, in-

cluding inference of missing links and artifacts.

2. Selection In response to queries, relevant artifacts
must be identified and returned.

3. Update The project’s archives must be monitored for
additions and changes that result from the develop-
ment and evolution of the system. The implicit group
memory must be updated to reflect the additions and
changes.

4. Hipikat Prototype

The Hipikat prototype is a client-server system. Hipikat
is instantiated currently for the Eclipse project, but has been
designed to be adapted easily to other open-source projects
that follow the general model described in Section 2.

The client, when commanded by the user, issues a re-
quest for suggestions to the server, and displays returned
results to the user. There are three parameters in any request
from the client for suggestions. Two of the arguments are
required: the first identifies anonymously the user,5 and the
second identifies artifact for which related items are sought.
An optional third argument is intended to further describe
the context of the query for additional tailoring of recom-
mendations, although it is not used at this time. The server
replies with a list of matches that the client then formats and
presents in human-readable format.

4.1. Hipikat Client

Since Eclipse is self-hosted, we wrote the client as a
plug-in that works within the IDE. This approach permits
the Hipikat client to integrate seamlessly into a full-featured
work environment, and to thus be used in combination with
other software engineering tools plugged into Eclipse. For
example, an Eclipse developer can use both Hipikat and
the Java search feature that comes bundled with the default
Eclipse distribution.

A developer who wants to make a query to Hipikat se-
lects an artifact in their Eclipse project workspace, such
as a class in a Java package browser, and chooses “Query
Hipikat” from a pop-up context menu. (See Figure 2 for
a full list of places in the IDE where such queries can be
made.) Identifier of the selected artifact is passed as the sec-
ond argument in the request to the Hipikat server, described
in Section 4.2.

Additionally, the Hipikat artifact database can be
searched based on search terms specified by the developer.
This functionality is accessed through a pane in the regular

5Users are represented in the query to facilitate future extensions to se-
lection mechanisms such as user-modelling and collaborative filtering. In
the interests of privacy, user ids used in queries do not personally identify
the user.

3

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

Bug report open in the Bugzilla editor
CVS-managed file open in the Java editor
File in the CVS Repository view
Revision in the CVS Resource History view
CVS-managed file in the workspace Navigator
Item recommended in the Hipikat Results view
Bugzilla search match in the Search results view
Java class or method in Outline and Hierarchy views

Figure 2. Places where Hipikat query can be
done in Eclipse

Eclipse search dialog, which also supports plain-text and
Java-specific searches.

The results of a query or search are displayed in a Hipikat
view within Eclipse (see Figure 5). The recommendations
are grouped by artifact type and by selection criteria as de-
termined by the identification submodule that reported a
link. A recommendation can be opened for viewing, either
within Eclipse or through an external viewer (e.g., a Web
browser) depending on the artifact. We also provide ac-
cess to Eclipse’s revision comparison functionality to allow
a developer to view a (CVS) artifact’s differences from the
preceding revision; for instance, to allow a developer to fo-
cus on particular changes to the source base. A Hipikat user
can reorganize the recommendation lists, delete unwanted
items, or move items towards the top or bottom of the list.
Currently, this feature is purely for a user’s direct benefit
and convenience; in the future, this feature is intended be
used to rate recommended items so that collaborative filter-
ing capabilities can be added. Lastly, any recommendation
can be used in another Hipikat query to help support easy
traversal of the links in the group memory.

4.2. Hipikat Server

The server implements the three functions described
earlier: identification, update, and selection. As Figure 3
shows, each function is encapsulated in a module. Each
module is divided into submodules based on an artifact or
link type for which it is responsible.

Update The update module for Eclipse has four submod-
ules: one each for Bugzilla, CVS, newsgroups, and the
Web site. Each update submodule monitors the project ar-
tifacts as appropriate for its type: The Web site is scanned
by crawling the links, the CVS repository is monitored by
parsing the history of updated files as gathered via cvs
update commands, news articles are downloaded using
the NNTP protocol from the Eclipse news server, and is-
sue items are parsed from the output of Web front-end

to Bugzilla.6 New and changed artifacts are inserted into
Hipikat’s artifact database, and change listeners in the iden-
tification module are notified of the updates.

The artifact database saves primarily the metadata from
the new and changed artifacts that are needed to establish
relationships between the artifacts. For instance, for a CVS
revision, the author and check-in time will be retained.
Text, such as the bug descriptions or check-in comments, is
indexed, both for the purpose of searching and for making
similarity comparisons, but otherwise artifacts contents
(i.e., the actual source of a Java file under CVS) that are not
used to make recommendations are not kept.

Identification The identification submodules register with
the update module as listeners for changes on artifact
types for which they are responsible. There are currently
four such submodules: check-in comment matcher (log-
matcher), check-in time matcher (activity-matcher), text
similarity matcher, and newsgroup thread matcher. When
informed of a new instance of an artifact, or a change to
an existing artifact, the identification submodules attempt
to infer links within the implicit group memory, following
the schema from Figure 1.

The log-matcher and the activity-matcher infer the im-
plements links between a source revision and an issue
ticket based on conventions used by Eclipse project devel-
opers. The log-matcher responds to changes in the CVS
database, scanning CVS check-in comments for text that
looks like bug id’s (e.g., “Fixes bug id” or “id: . . . ”). The
activity-matcher listens to updates to Bugzilla, taking ad-
vantage of the fact that Bugzilla is increasingly used to keep
track of all the work done in the project, not just bugs re-
ported by users. Since a developers will usually post a
message on Bugzilla (and change the issue ticket’s status)
shortly after relevant source changes have been checked in,
the activity matcher looks for checkins that are close to
(within six hours of) activity occurring in a Bugzilla item.
Checkins are further grouped into likely work units by look-
ing for all checkins by a given developer within a small time
window, similar to the strategy employed by Mockus, Field-
ing, and Herbsleb in their study of Mozilla development
process [11].

The text similarity matcher works in two phases. First
the text of new artifacts is indexed and each artifact—for
example, a Bugzilla description and its comments, or a doc-
ument on the project Web site—is turned into a document
vector whose dimensions correspond to words in the vo-
cabulary. The component magnitudes are the weights of
words in the document and are calculated using a prod-
uct of the term’s global weight, indicating its overall im-
portance in the entire collection, and local weight, which

6A production system could interface directly with the Bugzilla SQL
database.

4

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

Update Identification Selection

links
InsertInsert

artifact

Listen for
new artifacts

Follow
links

Monitor
sources

CVS

Web

Mail/News

Query

Related
artifacts

Artifact database

Figure 3. Hipikat server architecture

depends only on the frequency of terms within each doc-
ument. We use log-entropy[7] combination for the two
weights: The local weight is calculated as L(i; j) = log(1+
tfij) and the global weight is calculated as G(i) = 1 �

1
log(N)

PN
j=1 pij log(pij), where tfij is the number of times

term i occurs in document j, N is the number of documents
in the collection, pij =

tfij
di

, and di is the number of docu-
ments containing term i.

In the second phase, the text similarity matcher uses a
standard information retrieval vector-space cosine similar-
ity measure [14] to infer is similar to links between
artifacts. Specifically, the similarity between two docu-
ments is calculated as sim(di; dj) =

di�dj
kdikkdjk

. A selection
submodule is responsible for using the computed measures
to recommend a small set of nearest neighbours to an arti-
fact.

This text similarity approach is also used in user-
specified search queries: A user’s query is treated just as
another document vector, allowing matching artifacts to be
sorted by relevance based on their degree of similarity to the
search query.

Finally, the simplest identification submodule is the
newsgropu thread matcher, which looks for “References”
headers in newsgroup articles and reconstructs conversation
threads of a newsgroup posting and subsequent replies.

Selection Lastly, selection works by following links from
the artifact specified in client’s request. Submodules
are specialized to make recommendations for a sub-
set of artifact types and their links—for example, one
module makes recommendations on CVS and Bugzilla
artifacts by following implements (and its reverse,
is implemented by) links. Recommendations from all
selection submodules to a given query are merged together
before a final list is returned to the user.

Implementation The server is written as a Web application

running within Tomcat.7 The server and client communi-
cate using SOAP [3].

To make a query, the client makes a remote procedure
call, getRecommendations, with the three arguments
described earlier: the anonymous user making the query,
the id of an artifact for which recommendations are sought,
and the currently unused third argument to provide addi-
tional context for making recommendations. The id for an
artifact includes both a type (for quick selection of appro-
priate modules to handle the request), and a further unique
identifier within the artifact type name space, as appropri-
ate to the type (e.g., file path and revision number for a CVS
artifact).

The server replies with an XML-formatted list of
matches which is modelled on the “What’s Related” service
provided by Alexa.com and available in all major browsers.
The recommendations are wrapped in a Recommenda-
tionList XML element (Figure 4). Each item recom-
mended by the server is represented as a Recommenda-
tion element, with children key, name, reason, and
confidence. The key element uniquely identifies the
recommended artifact and is used if the user decides to open
it or make a subsequent query on it. The name element
is a human-readable description of the artifact and depend-
ing on its type can be a CVS file name, a one-line sum-
mary of a Bugzilla item, subject and author of a newsgroup
posting, etc. The reason element describes why the item
was recommended, and confidence expresses the rela-
tive strength of this relationship. The confidence value can
be descriptive, as in “Same discussion thread” for a news-
group posting, or numeric in the case of a text similarity
measure.

The Eclipse project produces all of the kinds of arti-
facts in our schema. As of September 2002, our Hipikat
server knows about 21,668 Bugzilla items (incorporat-
ing 72,536 additional comments), 125,429 CVS revisions,

7jakarta.apache.org/tomcat

5

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

<RecommendationList>
<Recommendation>

<key>cvs:dev.eclipse.org:/home/eclipse/. . .
org.eclipse.team.cvs.ui/src/org/eclipse/team/. . .
internal/ccvs/ui/actions/TagAction.java:1.13</key>

<name>org.eclipse.team.cvs.ui/src/org/eclipse/team/. . .
internal/ccvs/ui/actions/TagAction.java:1.13</name>

<reason>Bug ID in revision log</reason>
<confidence>High</confidence>

</Recommendation>
<Recommendation>

<key>bugzilla:12367</key>
<name>[CVS Repo View] ‘‘Define Branch Tag’’. . .

confusing?</name>
<reason>Text similarity</reason>
<confidence>0.6240631</confidence>

</Recommendation>
. . .

</RecommendationList>

Figure 4. A sample response from Hipikat
server.

36,864 newsgroup postings, and 1,459 Web pages (includ-
ing those used solely to group frames and navigation func-
tions) associated with the Eclipse project.

5. Validation

5.1. Initial Qualitative Study

Our first investigation of the Hipikat approach focused
on whether recommendations of relevant artifacts were of
any help to developers working on a change task, and if
so, which kinds of recommendations were used. We also
wanted to determine if there were recommendations devel-
opers would have found useful but that Hipikat did not sug-
gest. For this initial assessment, we chose to manually build
the implicit group memory for a medium-sized software
system that was under development in our research lab. We
then trialled a mock-up of Hipikat for this implicit group
memory as part of an assignment for a graduate software
engineering class held in our department.

The medium-sized software system used was the AVID
visualization tool, which allows a developer to analyze the
execution of a software system off-line in terms of an ar-
chitectural view of the system [17]. AVID is written in
Java and comprises 12,853 non-comment, non-blank lines
of code organized in 177 classes and 16 packages.

Since the AVID development did not use a bug-tracking
system, we analyzed its CVS repository, extracted about
two dozen distinct change tasks from its history, includ-
ing both bug fixes and new functionality, and entered these
tasks as items in a Bugzilla database. We then built up
the implicit group memory for the project, which consisted
of change tasks, CVS revisions, documentation, project-
related emails, and links between these artifacts. Although

we formed the links manually, we followed the principles
described in Section 3: revisions were linked to change
tasks based on similarity of the check-in comments to task
descriptions, documentation was associated through text
similarity, and associations between change tasks were in-
ferred using text similarity and overlap in source files that
were changed as part of a task. These links were realis-
tic: They contained both relevant and irrelevant suggestions
since they were based on the information recorded. For in-
stance, change tasks that contained similar words in their
description may have been about something totally differ-
ent, and groups of CVS checkins often included some revi-
sions that were not related to the check-in comment or the
rest of the group.

The mock-up client was a stand-alone Java application
that allowed the user to browse the CVS repository the on-
line documentation, and change task database. When the
client displayed an artifact, it would issue a background re-
quest to the Hipikat server for items related to the displayed
artifact, and would display a list of related artifacts returned
in a side pane. The client also included a “bookshelf” where
users could create notes as they worked and keep links to ar-
tifacts they accessed often.

The assignment in the graduate software evolution class
consisted of having students implement two changes to
AVID that we had selected from previously completed
changes on a development branch of the system. Students
were grouped into pairs; each pair was asked to use the
mock-up for one change and one of Rigi8, Chava9, or jRM-
Tool10 for the other. We randomized the assignment of tools
to the changes, and we randomized the order in which we
asked the pairs to make the changes. Following the comple-
tion of the assignment, we invited students to participate in
the study by sharing their assignment reports with us. Seven
pairs (out of twelve in the class) agreed and gave us a copy
of their assignment reports. We analyzed the comments in
the reports and interviewed six of the subjects.

Overall, the subjects reported that Hipikat helped them to
start the assigned task. In particular, suggestions of relevant
previous changes to AVID that were based on textual sim-
ilarity to the change at hand helped to identify the classes
and methods that the subject needed to understand or mod-
ify to complete the assigned task:

The suggestions on the side pane on the left
gave us the starting point of classes to look for.
We then used a bottom-up approach—browsed
through the source code to see whether it is rel-
evant to the change task. (Pair 5)

One potential problem with our approach is that a new-
8www.rigi.csc.uvic.ca
9www.research.att.com/sw/tools/chava/

10www.cs.ubc.ca/\˜murphy/jRMTool/doc/index.html

6

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

comer receiving suggestions may not have sufficient knowl-
edge of the system to determine readily what a suggestion
means and whether it is relevant. For the most part, the
subjects in our study were able to distinguish which sug-
gestions were likely relevant, and which were the result of
apparent similarity However, some pairs reported difficulty
in assessing relevance without “wasting a lot of effort” (Pair
5) investigating a suggestion. We also had reports of a pair
missing a relevant suggestion because they lacked knowl-
edge about the overall structure of the system, and realizing
its relevance only once they have figured out the solution on
their own.

For the implementation of the change we ignored
the existance [sic] of the AbstractQueryManager
although the Hipikat tool more or less directly
pointed us to it through the change task for [. . .]
(Pair 7)

The usefulness of suggestions made by Hipikat depends
on the context in which a suggestion is made and on the
experience of the developer(s) receiving a suggestion as can
be seen by the following two comments which talk about the
same change task and the same set of recommendations:

Unfortunately, none of the change tasks previ-
ously recorded in Hipikat bore much resemblance
to the change we were attempting aside from
identifying a file. . . (Pair 2)

and

Hipikat definitely helped us during the first part of
the task. . . . We quickly found a related task [. . .]
We confirmed that this task was related by exam-
ining the CVS differences in files that Hipikat in-
dicated were involved in the change. This meant
we knew which methods we needed to look at.
(Pair 4)

The results of this initial study showed that it was pos-
sible to make reasonable suggestions using the inferences
we had posited, and that those suggestions were (some-
times) useful to developers. We proceeded to implement the
Hipikat prototype for Eclipse, incorporating two enhance-
ments from the initial study: we added the return of a reason
for a recommendation to a user, and we changed the user
interface from automatically suggesting related artifacts to
making suggestions based on a query from the user.

5.2. Case Study: An Eclipse Change Task

As an initial step in the evaluation of our Hipikat pro-
totype for Eclipse, we undertook a case study in which we
used Hipikat to aid the performance of a change task on

Eclipse. We selected a completed enhancement for Eclipse
that was logged in Bugzilla, and created an implicit group
memory for Eclipse based on the project artifacts that were
in existence when that Bugzilla item was entered. The sub-
ject in this study was the first author on this paper. At the
time of this case, he had experience with Eclipse plug-in de-
velopment, but had not contributed to the core of the Eclipse
project and was in a position similar to that of a newcomer
to the Eclipse.org project. We chose a completed enhance-
ment to enable us to compare our solution with that devel-
oped by the Eclipse team.

The enhancement request we selected deals with the be-
haviour of Eclipse’s CVS repository browser. The browser
displays the files and directories residing in the repository,
and shows their existing branches and tagged versions. The
repository supports basic operations such as checking out
files (from either a trunk or version branch, as well as a
tagged version), viewing a file’s revision history, and cre-
ating new branches and tagged versions. However, when
a new version is created through the browser, a manual re-
fresh (potentially requiring the overhead of communication
with the server) is necessary before the new version ap-
pears in the browser. The desired enhancement is to have
the browser update automatically in this situation.11 We de-
scribe the subject’s use of Hipikat for the study as if it was
currently occurring to provide the context of how the tool
was used.

The subject starts off by opening the Bugzilla item de-
scribing the modification request describing the task at hand
in Eclipse. The subject then makes a Hipikat query from the
context menu of the viewer displaying the modification re-
quest. A list of similar items appears in the search result
window, Since this is an unsolved request, the list includes
only other Bugzilla items selected for their textual similarity
to the change task at hand (Figure 5).

Near the top of the list is bug 11419, whose one-line
description of “Automatically add version to repo[sitory]
view when tagging”, sounds similar to the current change
task. A double-click opens it, and the subject determines
that it describes functionality almost equivalent to the func-
tionality that is desired. The difference is that bug 11419
describes functionality that was activated from the context
menu for files in Eclipse workspace; the equivalent of the
CVS “tag” command, as opposed to “rtag” in the CVS
repository browser. Since bug 11419 is marked as “fixed”,
the functionality must have been added into Eclipse. The
subject makes another Hipikat query to get files related
to the completed enhancement, hoping to learn something
from the fix (Figure 6).

At the top of the results list for this query are file
revisions that Hipikat retrieved following the imple-

11Bug 116, accessible at URL: bugs.eclipse.org/bugs/show_
bug.cgi?id=116.

7

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

Figure 5. A screenshot of Hipikat being used within Eclipse IDE during the change task case study.
Zoomed-in rectangles show the change task, bug 116 (a), and list of related artifacts (b)

mented by links. In this case, there is a single file, TagAc-
tion.java rev. 1.13, which was recommended because the
bug id 11419 appeared in its check-in comment, and be-
cause of the temporal proximity of its check-in to the clos-
ing of the item in the Bugzilla database. To focus on what it
was that this revision changed in the code, the subject uses
the context menu in the “Hipikat results” view to request a
diff of the file to its preceding revision. The view compar-
ing the revisions shows that the fix centers on a call to the
CVS UI plugin’s RepositoryManager from within TagAc-
tion class’s execute method. The call is not entirely
straightforward, because it also requires interaction with the
model of CVS resources to find the tagged file’s project in
the workspace, and to map that file to the remote folder in
the CVS repository.

At this point, the subject uses Eclipse built-in facilities to
view the code of classes TagAction and Repository-
Manager, as well as the classes in the model that are used
in the TagAction’s code (e.g., IResource, ICVSRe-
moteResource, and CVSTag). With the subject’s atten-
tion focused on just this part of the code base, it does not
take long to figure out how tags are created in the model

and updated in the view.
What remains is figuring out why the code works when

called from the Tag as Version in the context menu on a file
in the workspace, but not in the CVS Repository browser.
Debugging the current version of TagAction, which in-
cludes the changes added in version 1.13, by, for instance,
inserting a breakpoint, can help the subject identify quickly
that it is not the action that is invoked for the CVS Reposi-
tory browser’s menu.

A look at the XML file that defines a plugin’s contri-
butions to various context menus shows that TagAction
is executed only when the Tag as Version option is cho-
sen from the context menu on items of type IResource,
which are directories and files in the Eclipse workspace.
Further on in the same file, the subject sees that for the
context menu on items of type ICVSRemoteResource,
TagInRepositoryAction is the action executed, so
the subject starts to look at the code for that class.

Upon inspection of TagInRepositoryAction, the
subject sees that its execute method is almost identical
to the execute method in TagAction before changes
implemented in the revision fixing bug 11419. This logi-

8

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

Type Name Reason
cvs . . . internal/ccvs/ui/actions/TagAction:1.10 Bug ID in revision log
bugzilla Bug 12367 - [CVS Repo View] ”Define Branch Tag” confusing? Text similarity
bugzilla Bug 8185 - Branch should automatically version Text similarity

. . .

Figure 6. The top few artifacts related to bug 11419

cally leads the subject to apply the same approach in Tag-
InRepositoryAction, which indeed solves the change
task, as evidenced by the the fix implemented by Eclipse de-
velopers.

6. Discussion

Lessons from validation
For software change tasks, an inquiry episode has been

defined as consisting of a developer asking a question, con-
jecturing an answer, and then searching through the code
and documentation to verify or reject the conjecture [16].
Since the search space is so large, newcomers tend to have
difficulty coming up not only with a good conjecture, but
also the way of searching through the documentation and
code to verify it. In our case studies, we found that Hipikat
was most useful at the beginning of a major inquiry episode.
A developer can query from a Bugzilla item describing the
change, producing a set of similar bugs: Some of these bugs
may serve as starting points for a newcomer to make more
informed conjectures. Specifically, recommended fixed
bugs will have associated source, which the developer can
use to identify code possibly relevant to the current change.

Most of the time, the recommendations to bugs and
source are still just entry points. The developer must still
evaluate the code and understand how it works. For this
part of the task, other source-based discovery tools, such as
the Java search feature of Eclipse, can be used to help the
developer focus on understanding a manageable (and rele-
vant) portion of the system.

A more fundamental issue with Hipikat is that the
quality and number of items recommended affects the
newcomer’s performance on the task. When the recom-
mendation list is long, the newcomer can have trouble
determining if any of the recommendations are relevant. In
the study described in Section 5.1, we found that newcom-
ers sometimes had difficulty assessing recommendations.
Some newcomers who were recommended a fixed bug with
many associated source files investigated all of associated
files in sequence, even when there was little basis to believe
a file was relevant for the current change. Reporting the
amount of code involved in a revision when presenting the
recommendations may alleviate this problem somewhat,
although obviously no machine-based solution will work in

all cases.

Eclipse We chose the Eclipse project as our testbed for two
main reasons. First, Eclipse is a large system, comprising
over 800,000 lines of Java code, for which a rich history
of project artifacts is available. Second, we could integrate
our tool into Eclipse, making it more accessible to Eclipse
developers. Since Eclipse shares similar processes and
structure with other open-source projects—for instance
both Eclipse and Mozilla use Bugzilla to track all work
done in a project—our approach may reasonably apply to
other targets.

Accuracy Our link inference algorithms are approximate.
Out of 9,418 bugs marked fixed as of August 24, 2002 in
the Eclipse Bugzilla database, the Hipikat log- and activity-
matcher identification submodules inferred revision links
for 5,688 (60%) of these bugs. The two submodules linked a
further 2,810 bugs to revisions even though these bugs were
not marked fixed; most of these links are probably false, the
result of bugs that have been reopened or that have been er-
roneously left open, or that refer to revisions implementing
test cases for still-unsolved bugs. Over two thirds of these
false links are ranked with lower confidence because they
are for activity that is significantly distant from the time
of the check-in: The confidence in a link inferred by the
activity-matcher progressively decreases when this distance
is over five minutes.

It remains to be seen how users will treat Hipikat
recommendations in view of their approximativeness. Will
a user give up on certain kinds of recommendations entirely
once they conclude, rightly or wrongly, that they are not
helpful, as happened during testing of our mock-up? Will
Hipikat’s “confidence” measures make sense? Since it has
been shown that expressing confidence as a numeric value
in recommenders makes little sense to users [8], we try to
use textual descriptions wherever possible. In some places,
like text similarity, there is no such obvious explanation
and it remains to be seen whether users will make use of
the numeric value (vector cosine), or if they will simply go
through the list and view recommended artifacts, possibly
filtering based on the short description of the artifact that is
included in the recommendations view.

Beyond Search The Eclipse web site supports a search

9

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

function. However, this search is of limited functionality,
in part, because of the high amount of noise in its matches.
As an example of the noise, the search includes the text
of source files so that any query involving a class name
will yield matches for all revisions of that class and other
classes that use it. More fundamentally, searching is by
definition useful when the user knows on what to search.
Hipikat, on the other hand, allows a user who is working on
a change task and who is unsure of where to start or what to
look for to simply say “tell me about what might be similar
to what I’m doing”.

Role of Task We use Bugzilla entries as focal points to which
other artifacts are linked. This organization makes sense in
view of the fact that Bugzilla is increasingly used to keep
track of all the work done in the project. The same process
happened in Mozilla—which is now much further along this
path, thanks to its longer duration and more diversified de-
veloper community—and we expect that as Eclipse evolves
in the same way, all revisions implementing more than triv-
ial changes will have corresponding Bugzilla items.

Furthermore, while Bugzilla is normally used with a
Web browser front end, including viewing and editing
of Bugzilla reports into Eclipse gives us a simple way
of tracking what the developer’s current change task
is. Although we are not currently using it to refine the
recommendations, having access to Bugzilla within the
IDE lowers the barrier to use Hipikat on change tasks and
makes it more likely it will be applied in the early stage
of change task planning where it is most likely to be helpful.

Collaborative filtering and user modelling Currently, the
identification of links between artifacts in Hipikat is purely
content-based; it depends solely on the contents of artifacts,
such as when artifacts are compared based on text similarity,
and on metadata, such as in the bug activity matcher iden-
tification submodule. Collaborative-based techniques could
be used to enhance link identification. For example, news-
group postings from authoritative sources, such as develop-
ers who checked in revisions on the same subject, could be
given higher priority when making recommendations.

Schema-based selection could also be further refined
through the use of a user model. For example, the CodeBro-
ker [18] reuse recommender keeps track of components in
a reuse repository that a developer has often accessed in the
past, assumes that these components are well-known, and
thus does not include the components in its recommenda-
tions. Although collaborative filtering would, by definition,
have to be done in the Hipikat server, user modeling could
be done partly or even entirely by the client.

7. Related Work

Many existing approaches have attempted to use the ar-
tifacts associated with a software development, other than
source, to aid in software evolution tasks. These approaches
vary in their degree of automation and in their specificity to
a task.

Several systems mine version control information. The
VE editor can display the revision in which a given line was
changed together with its check-in description, and supports
browsing of the code through a sequence of versions [1].
The Expertise Recommender system (ER) uses the author
information recorded in a program’s change history to gen-
erate recommendations of people who might have some ex-
pertise on a given problem [10]. Neither of these tools at-
tempts to integrate version information with other artifacts.
For example, we have found in practice that a problem re-
port often contains information beyond that in a version
check-in description.

Initial steps towards integrating software artifacts with
developers’ communication were made by Lougher and
Rodden [9], whose system allowed maintenance engineers
to make annotations on the code, capturing rationale and
making long-term collaboration possible. Their approach
requires the user to look at the exact spot in the source
code to see the annotation, which may not be as useful for
a relative newcomer trying to grasp tens of thousands of
lines of source. Anchored Conversations [4] coupled ac-
tual conversations between collaborators, either real time
chats or asynchronous messages, with the work artifact for
in-context discussion, but suffers from the same drawback
when dealing with a multi-megabyte artifact corpus.

Similar to Hipikat, Ye and Fischer’s CodeBroker [18]
uses information retrieval methods to determine software
artifacts to suggest in the context of a developer’s current
task. However, CodeBroker is tailored to helping a devel-
oper on small-scale reuse tasks: The tool monitors a devel-
oper’s use of a text editor watching for the method decla-
rations and the descriptions of those methods in comments,
the tool uses that information as a query to a library to find
potential components that could be reused instead of a new
component being created. In contrast, when used as a reuse
tool, Hipikat works at the granularity of a task, providing
such information as documents describing how a compo-
nent is to be used with other components. The CodeBro-
ker approach also relies on a developer properly formatting
documentation in the component being defined, and in the
presence of properly formatted documentation in the com-
ponents in the reuse library. Hipikat avoids placing any ad-
ditional requirements on the developers, making use of in-
formation that is potentially more informal. In this regard,
Hipikat is more similar to the Remembrance Agent [13],
which used information sources, such as user’s email fold-

10

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

www.manaraa.com

ers and text notes, to present documents relevant, or similar,
to the one currently being edited.

Mockus, Fielding, and Herbsleb have described building
logical work units from CVS revisions by looking at revi-
sions that were checked in by a single author within a small
time interval and that share the same comment [11]. We
relax their technique by allowing different check-in com-
ments. The advantage of relaxing this constraint is that we
may be more inclusive of the revisions that are part of the
same change. The disadvantage is the increased cognitive
load place don the developer who has to decide if a recom-
mendation based on this information is relevant. We do note
in the recommendations a lower-level of confidence when
this inference heuristic is used and the check-in comments
do not match. We further extend Mockus et al’s method
by attempting to match the checkin with the activity in the
issue-tracking system as an additional way to link the code
revisions with the descriptions of tasks in which developers
were engaged.

8. Summary

The archives of a software development project can serve
as an implicit group memory about the design of the system,
decisions made over the course of the development, “tricks”
for solving bugs, amongst many other kinds of informa-
tion. Although the archives are stored and often accessible
through common search techniques, the information is not
integrated into a group memory. In this paper, we have de-
scribed Hipikat, a tool that forms an implicit group memory
for a project by inferring links between stored artifacts, and
that then recommends pertinent parts of the group memory
(artifacts) to a developer working on a task. Through two
qualitative studies, we have shown that this approach shows
promise for helping a newcomer perform a task effectively
on an unfamiliar system.

Acknowledgments

This research was funded, in part, by NSERC and IBM
(Ottawa Software Lab), as part of the Consortium for Soft-
ware Engineering Research. We would like to thank the stu-
dents of CPSC 507 in the fall of 2001 for their participation
in our initial qualitative study.

References

[1] D. L. Atkins. Version sensitive editing: Change history as
a programming tool. In System Configuration Management
98, pages 146–157. Springer-Verlag, 1998.

[2] B. Berliner. CVS II: Parallelizing software development.
In USENIX Association, editor, Proceedings of the Winter
1990 USENIX Conference, pages 341–352, Jan. 1990.

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Lay-
man, N. Mendelsohn, H. F. Nielsen, S. Thatte,
and D. Winer. Simple object access protocol,
http://www.w3c.org/TR/SOAP, 8 May 2000.

[4] E. F. Churchill, J. Trevor, S. Bly, L. Nelson, and
D. Čubranić. Anchored Conversations: chatting in the con-
text of a document. In CHI 2000, pages 454–461, 2000.
ACM Press.

[5] D. Čubranić and K. S. Booth. Coordinating open-source
software development. In WETICE 1999, pages 61–65,
1999. IEEE Computer Society Press.

[6] M. Cusumano and R. Selby. Microsoft Secrets: How the
World’s Most Powerful Software Company Creates Technol-
ogy, Shapes Markets, and Manages People. The Free Press,
1995.

[7] S. Dumais. Improving the retrieval of information from ex-
ternal sources. Behaviour Research Methods, Instrument,
and Computers, 23(2):229–236, 1991.

[8] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining col-
laborative filtering recommendations. In CSCW 2000, pages
241–250, 2000.

[9] R. Lougher and T. Rodden. Supporting long term collabo-
ration in software maintenance. In COOCS=93, pages 228–
238, 1993.

[10] D. W. McDonald and M. S. Ackerman. Expertise Recom-
mender: A flexible recommendation system and architec-
ture. In CSCW 2000, pages 231–240, 2000. ACM

[11] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodol-
ogy, 11(3):1–38, July 2002.

[12] B. Perens. The open source definition. In C. DiBona, S. Ock-
man, and M. Stone, editors, Open sources: voices from the
open source revolution. O’Reilly, 1999.

[13] B. J. Rhodes and T. Starner. Remembrance agent. In PAAM
’96, pages 487–495, 1996.

[14] G. Salton and M. J. McGill. Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, New York, 1983.

[15] S. E. Sim and R. C. Holt. The ramp-up problem in software
projects: A case study of how software immigrants natural-
ize. In ICSE 1998, pages 361–370, 1998. IEEE Computer
Society Press / ACM Press.

[16] M.-A. D. Storey, K. Wong, and H. A. Müller. How do
program understanding tools affect how programmers un-
derstand programs? Science of Computer Programming,
36(2–3):183–207, Mar. 2000.

[17] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software
system information through high-level models. In OOPSLA
1998, pages 271–283, 1998. ACM Press.

[18] Y. Ye and G. Fischer. Information delivery in support of
learning reusable software components on demand. In Y. Gil
and D. B. Leake, editors, IUI 2000, pages 159–166, 2002.
ACM Press.

11

Proceedings of the 25th International Conference on Software Engineering (ICSE�03)
0270-5257/03 $17.00 © 2003 IEEE

